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Abstract —  In this paper, we got a further studying of 

Marshall type inequalities. We obtained a class of Marshall 

type maximal inequalities for  conditional  demimartingales {Sn, 

n>1} by using conditional Hölder inequalities and some 

inequalities related to conditional demimartingales. 
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I. INTRODUCTION 

 

In this paper, let {Sn, n > 1} be a random variables sequence 

defined on (Ω,F,P). Denote S0=0, I(A) is indicator function 

of set A, p > 0, p≠1 and 
q
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1
  =1. Let Λ= 


Sknk1
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Definition  1  Let {Sn, n >1} is a random variables 

sequence on L
1
(Ω,F,P). If for all  ji1 , 

E[(Sj - Si)f (S1, . . . , Sj)] > 0 

for every componentwise nondecreasing function f 

where expectation is defined, then  the  sequence {Sn, 

n>1} is called a demimartingale. In addition, if 

assume f is nonnegative, then {Sn, n>1} is called a 

demisubmartingale. 

The concept of demimartingale was introduced by  

Newman et al[1], after that many scholars got further 

studying about it and investigated some interesting results 

and applications[2-11]. 

For zero mean square integrable random variable X ,we have  
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Marshall[2] generalized above inequality as following 

form 
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where  EXk = 0,  E(Xk|X1, X2, . . . , Xk-1) = 0  a.e., k > 

2 and 2

kEX , 1k . 

Under above condition, if assume 
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then {Sn, n >1} would be a demimartingale. Mu et 

al[4] generalized inequality (1) under the condition of 

p

iXE || ,i > 1 and p > 2, and got Marshall type 

inequality as following form 
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where α is maximum value of following function 

]1,0[,)1(1)( 12   xxxxxh qq
. 

After that, Hu et al[5] generalized results in 

literature [4] to the case of condition demi- 

martingales and obtained the Marshall type probability 

inequalities for demimartingales. 

Assume X and Y are random variables defined on 

probability space (Ω,F,P) and  22 ,EYEX . 

Let F be a sub σ-algebra of A,  

Prakasa Rao[14] defined conditional covariance of X 

and Y(F-covariance) as follow 

)))(((ov YEYXEXEC FFFF   

where E
F
Z is conditional expectation of random 

variable Z which has been given condition F. 

Christofides et al[12] introduced following definition. 

Definition  2  Let {Sn, n > 1} be a random variables 
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sequence on L
1
(Ω,F,P), if for all  ji1 ,  

0)],()[( 1  jij

F SSfSSE   a.s. 

for every componentwise nondecreasing function f 

such that above expectation is defined, then {Sn, n > 

1} is called a F-demimartingale. In addition, if assume 

f is nonnegative, then {Sn, n > 1} is called a F-

demisubmartingale. 

Inspired by literature[13], we extend Marshall 

type maximal inequalities for nonnegative 

demimartingales {Sn, n > 1} in literature [4] to the 

case of conditional demimartingales {Sn, n > 1}. 

 

II. MAXIMAL INEQUALITIES FOR CONDITIONAL 

DEMIMARTINGALES 

Lemma  3[15]  If p|| XEF
 a.s., p||YEF

 

a.s., then 

qqFppFF YEXEXYE
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)||()||(||   a.s. , p>1, 

(2) 

qqFppFF YEXEXYE
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)||()||(||   a.s. ,0<p<1. 

(3) 

Lemma 4[12]  Let {Sn,n>1} be a F-demi(sub)martingale 

and g(·) be a nonnegative nondecreasing convex function, 

then {g(Sn), n>1} is a F-demisubmartingale. 

Lemma  5[13] Let {Sn,n>1} be a F-demisubmartingale, 

then for any F-measurable random variable ε > 0 a.s.  
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Lemma  6   Let {Sn, n > 1} be a F-demisubmartingle and 

E
F
S1 ≤ 0 a.s., assume there is a 1 < p < 2, such that 

p

n

F SE ||  a.s. for all n > 1 established, then for every 

F-measurable random variable ε > 0 a.s. while 
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a.s.  

Proof.  Denote Y= I(Λ). By using conditional Hölder 

inequality (2) and lemma 5, we can get 
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a. s. 

since 

qFFFFF PPPPP )())(1())(1)(()( q 

a.s. 

where ]1,
2

1
[)( FP  a.s., thus the proposition is proved. 

Theorem  7  Let (Sn, n > 1} be a F-demimartingale, E
F
S1 < 

0. If there is a 1 < p < 2, such that for all n > 1, have 

 pF SE ||0 n a.s., then for every F-measurable 

random variable ε>0 a.s. while ]1,
2

1
[)( FP  a.s.,we 

have 
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where M is positive solution of following function, 
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Proof.  By lemma 6 we can get 
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(6)   

let   0)1()( xxxg q
, M is positive solution of 

equation(5). Since 0)1()('' 2  qxqqxg , 

),0( x , we can easily get g(x) is a convex function 

on interval ），（ 0 , which mean for ),0( Mx  

xM

xgMg

x

gxg








 )()(

0

)0()(
, 

since 0)0(  g  and 0)( Mg . Then for 

),0( Mx can get 0)(g x ,namely M is minimum 

value of equation (6). 
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